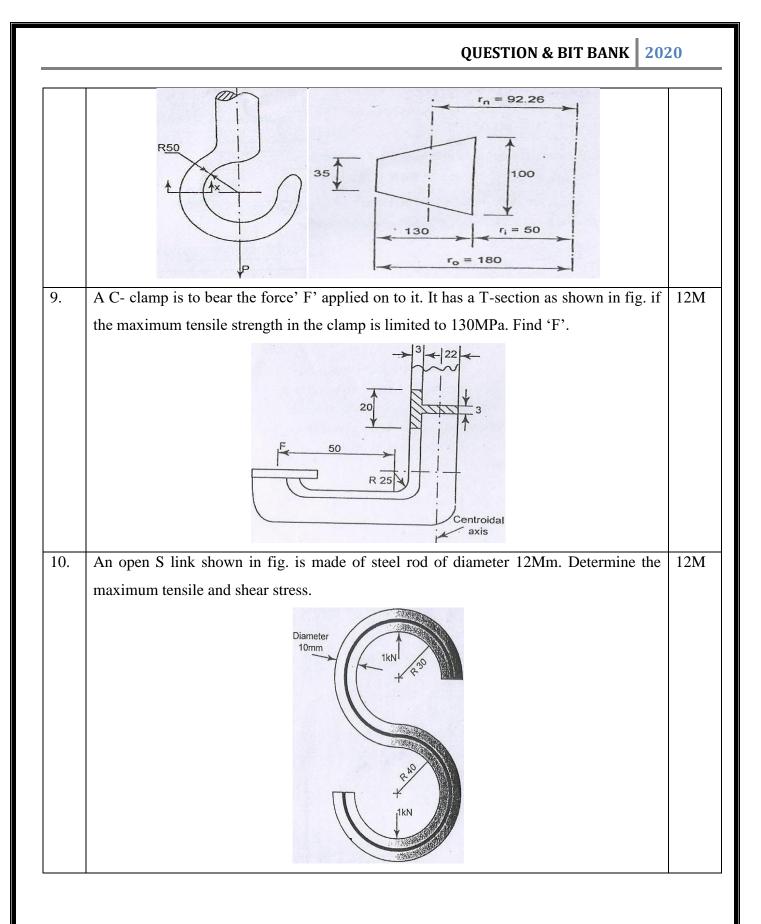


SIDDHARTH GROUP OF ENGINEERING INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : DME-II (16ME319)

Year & Sem: III-B.Tech & II SEM


Course & Branch: B.Tech - ME Regulation: R16

<u>UNIT I</u>

DESIGN OF CURVED BEAMS & POWER TRANSMISSION SYSTEMS

		1015
1.	A rope drive is to transmit 250 kW from a pulley of 1.2 m diameter, running at a speed	12M
	of 300 r.p.m. The angle of lap may be taken as π radians. The groove half angle is 22.5°.	
	The ropes to be used are 50 mm in diameter. The mass of the rope is 1.3 kg per metre	
	length and each rope has a maximum pull of 2.2 Kn, the coefficient of friction between	
	rope and pulley is 0.3.Determine the number of ropes required. If the overhang of the	
	pulley is 0.5 m, suggest suitable size for the pulley shaft if it is made of steel with a shear	
	stress of 40 Mpa.	
2.	Two shafts whose centres are 1 metre apart are connected by a V-belt drive. The driving	12M
	pulley is supplied with 95 Kw power and has an effective diameter of 300 mm. It runs at	
	1000 r.p.m. while the driven pulley runs at 375 r.p.m. The angle of groove on the	
	pulleys is 40°. Permissible tension in 400 mm ² cross-sectional area belt is 2.1 Mpa. The	
	material of the belt has density of 1100 kg / m^3 . The driven pulley is overhung, the	
	distance of the centre from the nearest bearing being 200 mm. The coefficient of friction	
	between belt and pulley rim is 0.28. Estimate: 1. The number of belts required ; and 2.	
	Diameter of driven pulley shaft, if permissible shear stress is 42 Mpa.	
3.	A belt drive consists of two V-belts in parallel, on grooved pulleys of the same size. The	12M
	angle of the groove is 30°. The cross-sectional area of each belt is 750 mm ² and $\mu =$	
	0.12. The density of the belt material is $1.2 \text{ Mg} / \text{m}^3$ and the maximum safe stress in the	
	material is 7 Mpa. Calculate the power that can be transmitted between pulleys of 300	
	mm diameter rotating at 1500 r.p.m. Find also the shaft speed in r.p.m. at which the	
	power transmitted would be a maximum.	
4.	A fan is driven by belt from a motor running at 740rpm. A leather belt with 8mm thick,	12M
	250mm wide is used. The diametr of motor pulley and driven pulley are 350mm and	
L	1	

	1370mm. the central distance is 1370mm and both pulleys are made of cast iron for	
	which co efficiaent of friction is 0.35. allowable stress for belt is 2.4MPa. belt density is	
	970kg/m ³ what is the power capacity of belt.	
5.	An open belt connects two flat pulleys. Pulley diameters are 300 mm and 450mm and	12M
	the corresponding angles of cap are 160° and 210° . the smaller pulley runs at 200 rpm,	
	μ =0.25. it is found that the belt is on the point of slipping when 3kw is transmitted. To	
	increase the power transmitted two alternatives are suggested., namely (i) increase the	
	initial tension by 10% and (ii) increasing μ by 10% by the application of a suitable	
	dressing to the belt. Which of these two methods would be more effective ? find the	
	percentage increase in power possible in each case.	
6.	Design a horizontal belt drive for a centrifugal blower, the belt driven at 600rpm by a	12M
	15kw, 1750rpm electric motor. The centre distance is twice the diameter of the larger	
	pulley. The density of the belt material= 1500 kg/m ³ maximum allowable stress =4MPa.	
	$\mu_1=0.5$ (motor pulley), $\mu_2=0.4$ (blower pulley); peripheral velocity of the belt=20m/s.	
	Determine the following:	
	i. Pulley diameters	
	ii. Belt length	
	iii. Cross sectional area of the belt	
	iv. Minimum initial tension for operation without slip	
7.	A punch press of capacity 90KN has a c-frame of T- cross section as shown in fig. The	12M
	frame is made of a material with an ultimate tensile stress of 400MPa for a factor of	
	safety of 3.5, determine the dimensions of the frame.	
8.	(a). Differentiate the straight and curved beams?	2M
		10M
	(b). A crane hook has a section, which for the purpose of analysis is considered	
	trapezoidal as shown in fig. it is made of plain carbon steel with an yield strength of	
	350Mpa in tension. Determine the load capacity of the hook for a factor of safety 3.	

<u>UNIT II</u>

DESIGN OF BEARINGS

1.	Design a journal bearing for a centrifugal pump with the following data.	12M
	Diameter of journal =150mm	
	Load on bearing =40kN	
	Speed of journal =900 RPM	
2.	A 75 mm journal bearing 100mm long is subjected to 2.5kN at 600 rpm. If the room	12M
	temperature is 24 ⁰ C, what viscosity of oil should be used to limit the bearing surface	
	temperature at 55° C.d/c ₁ =1000.	
3.	A full journal bearing of 50 mm diameter and 100 mm long has a bearing pressure of 1.4	12M
	N/mm ² . The speed of the journal is 900 rpm and the ratio of journal diameter to the	
	diametral clearance is 1000. The bearing is lubricated with oil whose absolute viscosity	
	at the operating temperature of 75°C may be taken as 0.011 kg/m-s. The room	
	temperature is 35°C. Find: (i) The amount of artificial cooling required. (ii) The mass of	
	the lubricating oil required, if the difference between the outlet and inlet temperature of	
	the oil is 10°C. Take specific heat of the oil as 1850 J/kg/°C.	
4.	A full journal bearing of 50 mm diameter and 100 mm long has a bearing pressure of 1.4	12M
	N/mm ² . The speed of the journal is 900 rpm and the ratio of journal diameter to the	
	diametral clearance is 1000. The bearing is lubricated with oil whose absolute viscosity	
	at the operating temperature of 75°C may be taken as 0.011 kg/m-s. The room	
	temperature is 35°C. Find: (i) The amount of artificial cooling required. (ii) The mass of	
	the lubricating oil required, if the difference between the outlet and inlet temperature of	
	the oil is 10°C. Take specific heat of the oil as 1850 J/kg/°C.	
5.	Following data is given for 3600 hydrodynamic bearings: journal diameter =100 mm,	12M
	radial clearance =0.12mm, radial load =50kN, bearing length =100 mm, journal speed	
	=1440rpm and viscosity of lubricant = 16CP. Calculate (i) minimum film thickness (ii)	
	coefficient of friction and (iii) power lost in friction.	
6.	Design a journal bearing for centrifugal pump for the following data:	12M
	Load on the journal $= 12$ kN	
	Diameter of the journal =75mm	
	Speed=1440 rpm	
	Atmosphere temperature $=16^{\circ}C$	
	Operating temperature= 60° C	

7.	A 70mm machine shaft is to be supported at the ends. It operates continuously for 8hrs								12M	
	per day,320 days per year for 8 years. The load and speed cycle for one of the bearings								ings	
		below. Select	-		1 7				U	
	S.No	Fraction of	Radial	Thrust	Speed,	X	Y	Ζ		
		cycle	load,N	load,N	rpm					
	1	0.25	3500	1000	600	0.56	1.2	1.5		
	2	0.25	3000	1000	800	0.56	1.2	1.5		
	3	0.5	4000	2000	900	0.56	1.4	1.5		
8.	Select a su	uitable spheric	al roller be	earing from S	KF series 2220	C to suppo	ort a rad	dial loa	d of	12M
	4kN and a	axial load of	2kN. Mini	mum life req	uired is 10000) hrs at 1	000 rpi	m. For	this	
	4kN and axial load of 2kN. Minimum life required is 10000 hrs at 1000 rpm. For this select bearing find									
	(i) The expected life under the given loads									
	(ii) The equivalent load that can be supported with a probability of survival of 95% with									
	10000 hours.									
9.	The radial load on a roller bearing varies as follows a load of 50 kN is acting 20% of								12M	
	time at 500 rpm and a load of 40kN is acting 50% of the time at 600 rpm. In the									
	remaining time the load varies from 40kN to 10kN linearly at 700 rpm. Select a roller									
	bearing from NU22 series for a life of at least 4000 hours. The operating temperature is									
	175 ⁰ C.									
10.	The ball bearing for the drilling machine spindle is rotating at 3000rpm. It is subjected to									12M
	radial load of 2500N and an axial load of 1500N. It is to work 50 hours per week for one									
	year. Desi	gn a suitable	bearing if t	he diameter o	f the spindle is	s 40mm.				
11.	Select a suitable roller bearing for a 55mm diameter shaft, the bearing should be capable									12M
	of withstanding 3KN radial load and 1.5KN axial load at 750rpm.the bearing is to have a									
	desired rated life of 2000hrs at reliability of 94%.there is a light shock load and inner									
	ring rotates.									
12	The ball bearing for the drilling machine spindle of 40mm diameter is rotating at								12M	
	3000rpm. It is subjected to radial load of 2000N and an axial load of 750N. It is to work									
	45 hours p	er week for o	ne year. Se	elect and spec	ify a suitable b	oall bearin	g.			
13	A 30BC03 deep groove ball bearing is to operate at 1600rpmand carries 8kN radial load								ad	12M
10	and 6kN thrust load. The bearing is subjected to a light shock load. Determine the rating									

<u>UNIT III</u> DESIGN OF IC ENGINES PARTS

1.	The following data is given for the piston of a four stroke diesel engine:	12M
	Cylinder bore = 250 mm	
	Material of piston rings = Gray cast iron	
	Allowable tensile stress=100N/mm ²	
	Allowable radial pressure on cylinder wall = 0.03 MPa	
	Thickness of piston head = 42 mm and No of piston rings = 4	
	Calculate: (i) Radial with of piston rings. (ii) Axial thickness of piston rings. (iii) Gap	
	between the ends of piston rings before and after assembly. (iv) Width of the top land.	
	(v) Width of the ring grooves. (vi) Thickness of the piston barrel and thickness of the	
	barrel open end.	
2.	Design a cast iron piston for a single acting four stroke engine for the following data:	12M
	Cylinder bore = 100 mm	
	Stroke = 125 mm	
	Maximum gas pressure = 5 N/mm^2	
	Indicated mean effective pressure = 0.75 N/mm	
	Mechanical efficiency $= 80\%$	
	Fuel consumption = 0.15 kg per brake power per hour	
	Higher calorific value of fuel = 42×10^3 kJ/kg	
	Speed = 2000 rpm	
	Tensile stress for cast iron (σ_t) = 38 MPa. Any other data required for the design may be	
	assumed.	
3.	(a) Enumerate the qualities of good cylinder liners.	6M
	(b) What is the function of piston? Explain piston troubles.	6M
4.	(a)What are the advantages of dry liners?	2M
	(b)A four stroke diesel engine has the following specifications: Brake power = 6 kW ,	10M
	speed = 1000 rpm, indicated mean effective pressure = 0.45 N/mm ² , mechanical	
	efficiency = 85%. Determine: (i) Bore and length of the cylinder. (ii) Thickness of	
	cylinder head. (iii) Size of studs for the cylinder head.	
5.	Design a trunk type CI piston for an IC engine having a diameter of 100mm and length	12M
	of 150mm. the max pressure is 3.5MPa. Maximum permissible tension for CI for the	
	design and head thickness is 30MPa and for the piston ring material 45MPa, bearing	
	1	I

	pressure for the piston pin should not exceed 200MPa.	
6.	A connecting rod for a high speed IC engine uses following data:	12M
	Cylinder bore = 125 mm	
	Length of $CR = 300 \text{ mm}$	
	Maximum gas pressure = 3.5 MPa	
	Length of stroke = 125 mm	
	Mass of the reciprocating parts $= 1.6 \text{ kg}$	
	Engine speed = 2200 rpm	
	Calculate: (i) Size of cross section of the connection rod.	
	(ii) Sizes of the big and small end bearings.	
7.	(a)Explain why torsional vibrations are dangerous.	6M
	(b)Explain reasons for the failure of a crank shaft.	6M
8.	Design a I-section of a connecting rod for an I.C engine using the following data:	12M
	Piston diameter = 125 mm	
	Stroke = 150 mm	
	Length of connecting $rod = 300 mm$	
	Gas pressure = 5 N/mm^2	
	Speed of engine = 1200 rpm	
	Factor of safety $= 5$ and material is steel 35 NiCr60.	
9.	(a)Explain the design consideration for the big end and small end of connecting rod.	6M
	(b)What are the materials of the piston pin bearings and the crank pin bearings? Explain.	6M
10.	Design overhung crank shaft for a 0.25 m \times 0.4 m horizontal gas engine, explosion	12M
	pressure2.38 MPa, weight of flywheel 16 kN, total belt pull 3 kN. When the crank is at	
	300, the torque on the crank shaft is maximum and the gas pressure at this position is	
	1.015 MPa. Length of the connecting rod is 0.95 m.	
11.	Design a connecting rod for an IC engine running at 1800rpm and developing a	12M
	maximum pressure of 3.15 N/mm ² the diameter of piston is 100mm, mass of the	
	reciprocating parts per cylinder is 2.25kg, length of connecting rod is 380mm, stroke of	
	piston is 190mm and compression ratio 6:1. Take a factor of safety of 6 for the design.	
	Take length to diameter ratio for big end bearing as 1.3 and small end bearing as 2,	
	corresponding bearing pressure as 10N/mm ² and 15 N/mm ² . The density of the material	
	rod may be taken as 8000 kg/m ³ and the allowable stress in the bolts as 60 N/mm ² and in	
	cap as 80 N/mm^2 . The rod is to be of I- section for which you can choose your own	
		1

proportions.

Draw a neat sketch. Use Rankin's formulae for which the numerator constant may be taken as 320 N/mm^2 and denominator constant as 1/7500.

<u>UNIT IV</u> <u>DESIGN OF MECHANICAL SPRINGS</u>

1.	A compression spring made of alloy steel of coil diameter 75 mm and spring index 6.0,	12M
	number of active coil 20 is subjected to a load of 1.2 kN. Calculate: (i) The maximum	
	stress developed in the coil. (ii) The deflection produced. (iii) The spring rate.	
2.	It is required to design a helical compression spring with plain ends, made of cold drawn	12M
	plain carbon steel, for carrying a maximum pure static force of 1000 N. The ultimate	
	tensile strength and modulus of rigidity for spring material are 1430 N/mm ² and 85	
	N/mm ² respectively. The spring rate is 48 N/mm. If spring index is 5, determine: (i) Wire	
	diameter. (ii) Total number of coils. (iii) Free length and (iv) Pitch. Draw a neat sketch of	
	spring with necessary dimensions.	
3.	Design a valve spring for an automobile engine when engine valve is closed, the spring	12M
	produces a force of 44 N and when valve open, produces a force of 54 N. The spring	
	must fit over the valve bush which has an outside diameter of 20 mm and must go inside	
	a space of 35 mm. The lift of the valve is 6 mm. The spring index is 12. The allowable	
	stress may be taken as 325 N/mm ² . Modulus of rigidity may be assumed as 80×10^3	
	N/mm ² .	
4.	A semi-elliptical laminated vehicle spring to carry a load of 6000 N is to consist of seven	12M
	leaves 65 mm wide, two of the leaves extending the full length of the spring. The spring	
	is to be 1.1 m in length and attached to the axle by two U-bolts 80 mm apart. The bolts	
	hold the central portion of the spring so rigidly that they may be considered equivalent to	
	a band having a width equal to the distance between the bolts. Assume a design stress for	
	spring material as 350 MPa. Determine: (i) Thickness of leaves. (ii) Deflection of spring.	
	(iii) Diameter of eye. (iv) Length of leaves. (v) Radius to which leaves should be initially	
	bent.	
5.	(a) Explain what you understand by A.M. Wahl's factor and state its importance in the	4M
	design of helical springs.	8M
	(b) A mechanism used in printing machinery consists of a tension spring assembled with	
	a preload of 30 N. The wire diameter of spring is 2 mm with a spring index of 6. The	
	spring has 18 active coils. The spring wire is hard drawn and oil tempered having	

QUESTION & BIT BANK 2020 following material properties: Design shear stress = 680 MPa, Modulus of rigidity = 80 kN/mm². Determine: (i) The initial torsional shear stress in the wire. (ii) Spring rate. (iii) The force to cause the body of the spring to its yield strength. (a)What is the function of a spring? 3M 6. (b) A helical spring is made from a wire of 6 mm diameter and has outside diameter of 9M 75 mm. If the permissible shear stress is 350 MPa and modulus of rigidity 84 kN/mm², find the axial load which the spring can carry and the deflection per active turn. A bumper consisting of two helical steel springs of circular section brings to rest, a 12M 7. railway wagon of mass 1500 kg and moving at 1.2 m/s. While doing so, the springs are compressed by 150 mm. The mean diameter of the coils is 6 times the wire diameter. The permissible shear stress is 400 MPa. Determine: (i) Maximum force on each spring. (ii) Wire diameter of the spring. (iii) Mean diameter of the coils and (iv) Number of active coils. Take $G = 0.84 \times 105 MPa$. Design a close coiled helical compression spring for a service load ranging from 2250 N 12M 8. to 2750 N. The axial deflection of the spring for the load range is 6 mm. Assume a spring index of 5. The permissible shear stress intensity is 420 MPa and modulus of rigidity, G $= 84 \text{ kN/mm}^2$. (a)Classify springs according to their shapes. Draw neat sketches indicating in each case 9. 4Mwhether stresses are induced by bending or by torsion. (b)Design a spring for a balance to measure 0 to 1000 N over a scale of length 80 mm. 8M The spring is to be enclosed in a casing of 25 mm diameter. The approximate number of turns is 30. The modulus of rigidity is 85 kN/mm². Also calculate the maximum shear stress induced. 10. Design and draw a valve spring of a petrol engine for the following operating 12M conditions : Spring load when the valve is open = 400 NSpring load when the valve is closed = 250 NMaximum inside diameter of spring = 25 mmLength of the spring when the valve is open=40 mmLength of the spring when the valve is closed = 50 mmMaximum permissible shear stress = 400 MPa

<u>UNIT V</u> DESIGN OF GEARS

1.	A compressor running at 300 rpm is driven by 15kW, 1200rpm motor through	12M
	20° full depth involute gears. The centre distance is 375mm. choose the suitable	
	materials for the pinion and gear, design the drive.	
2.	In a spur gear drive for a rock crusher, the gears are made of case hardened alloy steel.	12M
	The pinion is transmitting 18 kW at 1200 rpm with a gear ratio of 3.5. The gear is to	
	work 8 hours/day for 3 years. Design the drive.	
3.	A pair of straight spur gears is required to reduce the speed of shaft from 500 to 100 rpm	12M
	while continuously running 12hr per day. The pinion is of 40C8 steel and has 20 teeth.	
	The wheel is of cast iron of grade FG200 and has 100 teeth. The gears are of 8mm	
	module, 100 mm face width and 20^0 pressure angle. Calculate power rating.	
4.	A pair of gears connecting parallel shafts is to transmit 415 N-m torsional moment at	12M
	2800 rpm of the pinion. The teeth are to be 20° stub of heat treated alloy steel. The width	
	of face is 38mm. The driver gear rotates at 1800 rpm. Select necessary module and check	
	for wear.	
5.	A pair of gears is to be designed to transmit 30kW for a pinion speed of 1000 rpm and a	12M
	speed ratio of 5. Design the gear train.	
6.	A helical gear set used in a paper pulping machine connects the driving motor to the	12M
	blade shaft. A power of 20kW is transmitted by the motor at 1600rpm while the blade	
	shaft runs at 400rpm. Due to space restrictions the center distance between the gears is	
	kept at 500mm. choosing suitable materials for the gears design the 20^0 full depth	
	involute helical gears with a helix angle of 25° .	
7.	A pair of helical gears are to transmit a power of 15 kW. The teeth are 20^0 stub in	12M
	diametral plane and have helix angle of 45° . The pinion runs at 10,000 rpm and has 80	
	mm pitch diameter. The gear has 320 mm pitch diameter. If the gears are made of cast	
	steel having allowable static strength of 100 MPa; determine a suitable module and face	
	width from static strength considerations and check the gears for wear assuming σ_{es} =	
	618 MPa.	
8.	A compressor running at 350 rpm is driven by 5 kW, 1400 rpm motor through 20° full	12M
	depth spur gears. The motor pinion is to be of C30 forged steel hardened and tempered,	
	and the driven gear is to be of cast iron grade 35. Assuming medium shock condition,	
	design the gear drive completely. Take minimum number of teeth is 18 for the pinion.	

	The gears are working for one shift per day in an industrial atmosphere and to work for	
	two years before their replacement.	
9.	A pair of helical gears in a milling machine is used to transmit 4.5 kW at 1000 rpm of the	12M
	pinion and the velocity ratio is 3:1. The helix angle of the gear is 15^0 and both gears are	
	made of steel C45. The gears are 20^0 FDI and the pinion is to have minimum of 20 teeth.	
	The gear is to work 8 hrs/day for 3 years. Design the helical gears. Take the required	
	hardness for both gears is more than 350 BHN.	
10.	A motor shaft rotating at 1500 r.p.m. has to transmit 15 kW to a low speed shaft with a	12M
	speed reduction of 3:1. The teeth are $14\frac{1}{2}^{0}$ involute with 25 teeth on the pinion. Both the	
	pinion and gear are made of steel with a maximum safe stress of 200 MPa. A safe stress	
	of 40 MPa may be taken for the shaft on which the gear is mounted and for the key.	
	Design a spur gear drive to suit the above conditions. Also sketch the spur gear drive.	
	Assume starting torque to be 25% higher than the running torque.	